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Abstract
The characterization of the spectrum of eigenstates of quasiperiodic hetero-
structures is discussed by focusing on three questions. Arguments are
advanced to justify the often indiscriminate use of different approximants in
the calculation of the eigenvalue spectra. It is stressed that the calculation of
the fractal dimension may be rather inaccurate if the high eigenvalue range is not
included, even if physically the interest is limited to the low range. The question
of self-similarity is critically examined and found to have a very limited range
of validity in practice. The unique properties of the Rudin–Shapiro sequence
are also stressed.

1. Introduction

Quasiperiodic, or quasiregular, heterostructures (henceforth QH) follow an algorithmic
sequence S based on some self-replicating rule like, say, the Fibonacci sequence and many
others. There is a great deal of current work on QH and numerous references can be found
in two recent reviews [1, 2]. This article is actually not concerned with any specific case, but
with some broad issues, and for this it will suffice to consider mathematically simple problems
described by a single, linear, ordinary, second-order differential equation. The problem is
actually three dimensional, but with a sequence of planar interfaces, after two-dimensional
in-plane Fourier transformation, it becomes mathematically a one-dimensional problem. This
will be commented on later.

Having thus simplified the situation we address three elementary questions. Firstly, in
practice, both theoretically and experimentally, one does not form the full infinite sequence
S∞, but reaches only up to some finite generations SN in the repeated application of the
self-replicating rule. It is reasonable to expect that, for sufficiently large N , SN will display
essentially the features of the ideal infinite sequence, and thus one takes SN as an acceptable
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numerical approximation. But this raises the question of boundary conditions (BC) at the
extremes of the finite heterostructure. The second question concerns some technical aspects
related to the fractal analysis of the spectra of these systems and the third one concerns the
question of self-similarity.

The main point of this paper is to stress that some of the claims often made lack a formal
mathematical justification and to demonstrate how a fractal analysis may require considerable
care in order to ensure correct results. However, while often it is not possible to provide
formal conclusive proofs, one can design some suggestive numerical experiments. These are
presented in section 2, together with the discussion of the first question. Furthermore, the
question of the often-claimed self-similarity is examined in section 3. Final comments are
made in section 4.

2. Fractal analysis of the spectra of QH

We shall consider two elementary problems, namely, (i) electronic states described by a one-
band effective-mass model and (ii) pure shear elastic waves propagating along a symmetry
direction of cubic materials—the vibration amplitude, along an equivalent cubic symmetry
axis, is perpendicular to the propagation direction, which is the growth direction of the
heterostructure, and parallel to the interfaces. The differential equation is the same in both
cases but they may admit different BC. Moreover, while the long-wavelength Debye model for
shear waves in a solid crystal requires an upper bound in the spectrum in order for the model
to be physically meaningful, the spectrum of electronic states has no upper bound, a fact with
an implication for the fractal analysis which will be presently discussed.

We have studied two types of QH, one based on the Fibonacci sequence, which is the most
commonly studied, and the other one on the Rudin–Shapiro sequence, which presents some
intriguing features. We thus have four different systems, namely:

(1) Electronic states. Fibonacci sequence. A = Al0.35Ga0.65As, B = GaAs, mA = 0.096m0,
mB = 0.067m0, VA = 379 meV, VB = 0, dA = 8.4 Å, dB = 16.8 Å. This system was
studied in reference [3].

(2) Elastic shear waves. Fibonacci sequence. A = AlAs, B = GaAs, dA = 17 Å, dB = 42 Å.
Mass densities and stiffness coefficients in table 1.

Table 1. Mass densities and stiffness coefficients employed in the calculations concerning elastic
shear waves for the systems described in the text.

ρ (kg m−3) C44 (1010 N m−2)

GaAs 5316.9 5.94
AlAs 3721.8 5.42

(3) Electronic states. Rudin–Shapiro sequence. The constituent slabs A and C are as in
system 1, with the same parameters. We generate the successive generations by starting
with an alphabet of four letters, A, B, C, D and applying the substitution rules

ξ(A) = AC ξ(B) = DC ξ(C) = AB ξ(D) = DB (1)

corresponding to this sequence [2,4–7]. The constituent slabs A and B are as in system 1
and then we make C = A and D = B.

(4) Elastic shear waves. Rudin–Shapiro sequence constructed as in system 3, with constituent
slabs A and B as in system 2.
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Now, consider a finite realization SN of a given sequence S for N—the generation—finite
though largish. We then define as an approximant the problem defined by SN with given BC
at both extremes—not to be confused with the matching boundary conditions to be imposed
at the interfaces. The periodic approximant, defined by Born–von Karman periodic boundary
conditions at the extremes of SN , is actually a superlattice in which SN is the period. The term
Fibonacci superlattice, for instance, is often—though not always—used in this sense, but at
other times it denotes simply the finite generation FN without being too explicit about BC.
Given any sequence SN we shall consider three different approximants defined by the BC,
namely:

(i) Periodic BC. This is the periodic approximant, just defined. This can serve to model the
case of propagating states. An approximant in the same spirit would assume semi-infinite
media—A or B—at both ends of SN .

(ii) Dirichlet BC, in which the amplitude vanishes at the boundaries. This corresponds to
infinite barriers for electronic states or rigid walls for elastic waves.

(iii) Von Neuman BC, in which the derivative vanishes at the boundaries. This corresponds to
freely vibrating surfaces.

The calculations were performed by using a full transfer matrix which transfers amplitudes
and derivatives [8].

Now, consider the fractal analysis of the spectra of such systems. We concentrate on the
generalized box-counting dimension D(q), where q is a continuous parameter ranging from
−∞ to +∞, which is related to the function f (α), which describes the spread of values of the
scaling index α over the different regions of the spectrum [9–14]. It is proved quite generally
that D(q) varies between the values

Dmax = D(−∞) � 1 Dmin = D(+∞) � 0. (2)

Moreover,α spans a range of values—wheref (α) > 0—with lower and upper bounds [12]

αmin = Dmin αmax = Dmax. (3)

Practical aspects of the numerical computation of D(q) and f (α) were discussed in
reference [2], where it was stressed that in the case of electronic states this requires special
care for q large and negative, which is precisely the region for which thorough knowledge is
needed in order to evaluate f (α) correctly as α approaches αmax .

Now, in the study of electronic spectra of QH, attention is often focused on the low-
energy range, but an accurate evaluation ofD(q) for q negative and large depends critically on
including a sufficiently large range of the high-energy part of the spectrum. In fact [2], since
the energy of the electronic states has no upper bound,

lim
q→−∞D(q) = 1 (4)

which is intuitively to be expected because for increasingly high energies the electronic states
tend to behave increasingly like free electrons, with a spectrum which is absolutely continuous
and has therefore a fractal dimension equal to unity [4–7].

Figure 1 givesD(q) for system 1—full line. The calculations were done for the generation
N = 18 and in a few cases checked up to N = 20 without any significant numerical changes.
The energy range included values from VB up to VB + 50(VA − VB), close to 19 eV above the
bottom of the well material (GaAs). It is seen that, as expected, the upper bound ofD(q) is 1.
Thus the curve f (α) reaches up to α = 1, as expected.

The calculations were done with (a) infinite barriers and (b) periodic approximants, with
apparently the same results. This is easy to understand if we define a 2-vector Ψ and 2 × 2
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Figure 1. The generalized box-counting fractal dimension D(q) for system 1—see the text. Full
line: results obtained by covering the energy range from VB + 50(VA − VB). Dashed line: results
obtained by including only the energy range from VB to VA.

real energy-dependent transfer matrix T by [8]

Ψ(z) =
[

ϕ(z)

ϕ′(z)/m

]
Ψ(z) = T(z, z0) · Ψ(z0). (5)

Then the two-component ‘vector’ transferred by T is continuous across the heterostructure
extending from z = 0 to z = L, the length of the finite realization SN of the QH under study.
Infinite barriers at the boundaries require ϕ(L) to vanish which, by (5), requires

T12(L, 0) = 0. (6)

This is the secular equation yielding the eigenvalues if this approximant is used. Now
consider the periodic approximant. Then the Born–von Karman BC read, putting T ≡ T(L, 0),

(T11 − eikL)�1k(0) + T12�2k(0) = 0

T21�1k(0) + (T22 − eikL)�2k(0) = 0.
(7)

If we solve this problem, then we find the minibands of the superlattice formally defined
and, in each miniband, E is a function of k. We now ask whether there are any solutions of
equation (6), the infinite-barrier approximant, for which equations (7) are satisfied. Then, since
ϕk(0) vanishes and, by assumption, this happens for an energy at which T12 also vanishes, we
are led to

T22 = eikL. (8)

But the matrix T is real and this leaves two possibilities. One is that kL is real and a
multiple of π . Then the energy eigenvalue is at a band edge of the minibands. The other
one is that kL is complex, the real part being a multiple of π . Then E is a forbidden energy
value corresponding to that complex value of k for which (8) is satisfied in a real energy loop
spanning a gap of the miniband spectrum of the periodic approximant.
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Whether inside the gaps or just at their boundaries, the two sets of eigenvalues are
topologically equivalent among themselves and equivalent to the spectrum of eigenvalues
yielded by equation (8). It is easily seen that the same analysis holds for approximant (iii)
with ϕ′ instead of ϕ and T21 instead of T12. Thus the result of the fractal analysis is the same
irrespective of the choice of approximant provided that the calculation employing (i) is carried
out just for one reduced value of k, say, k = 0 in a folded scheme with all minibands in the first
1D Brillouin zone, so one picks out a sequence of successive band-edge levels. Note that one
may even choose approximant (iii) for electrons, although it is in itself physically meaningless.
Studies of QH are very abundant in the literature and results are often reported without always
specifying the type of approximant involved. The point of this analysis is to stress that all
commonly employed approximants are formally acceptable and yield topologically equivalent
results provided that the high-energy range—in the case of electrons—is properly covered.

In an interesting study of optical spectra of a Fibonacci heterostructure [3], corresponding
to system 1 described above, the analysis focuses on the low-energy range involved exp-
erimentally in optical transitions. The scaling factor α appears to attain a maximum value
short of unity. Figure 1—dashed line—shows D(q) calculated by taking only the part of the
spectrum of energy states between VB and VA—that is, in the wells of the heterostructure.
This yields D(+∞) = 0.50, D(0) = 0.76 and D(−∞) = 0.88, quite in line with the results
of reference [3], which illustrates the importance of the high-energy range for an accurate
characterization of the topological properties of the spectrum, even if one analyses experiments
involving only lower energies.

We now consider the Rudin–Shapiro (henceforth R–S) sequence, which is in some respects
rather special. For all other self-replicating sequences commonly studied, the conditions for the
application of the Bovier–Ghez theorem hold [6,7] and one can then prove that the spectrum is
singular continuous, and therefore with fractal dimension<1. ThenD(q) takes values between
0 and 1. It was pointed out in reference [2] that this does not hold for the R–S sequence. Now,
the fact that the Bovier–Ghez theorem cannot be applied only means that it cannot be proved
that the spectrum must be singular continuous, but the possibility is not excluded. It only
means that the issue is uncertain and the spectrum may be singular continuous—with values
of D < 1—or absolutely continuous with all D = 1.

In the absence of a formal mathematical foundation one can only carry out some numerical
experiments. In one, reported in reference [2], D was found to be constant and equal to unity
within the attainable numerical accuracy, which is not a conclusive proof, but it is a very
striking example of a QH which is based on a self-replicating sequence but appears to have
an absolutely continuous spectrum. We have performed another two numerical experiments
on R–S heterostructures. One is for system 3 (electronic states), generation N = 11, and the
other one for system 4 (elastic waves), generationN = 16. The fullD(q) curve was calculated
and some results again checked by—partial—independent calculation employing a different
approximant. It is clear that a calculation reaching up to the very high part of the spectrum
may become physically meaningless for elastic waves if the Debye cut-off is exceeded, but in
any case it is a legitimate formal system for a numerical experiment. Table 2 gives the key

Table 2. Characteristic values of the generalized box-counting fractal dimension obtained for
systems 3 and 4 described in the text.

System D(−∞) D(0) D(+∞)
3: electrons 1 0.97 0.65
4: shear waves 1 0.92 0.87



3694 R Pérez-Álvarez et al

results for the two systems. In both cases the spectrum is fractal, which again is a possibility
which cannot be ruled out.

We note that in both of these cases, while the sequence is R–S, only two different con-
stituent slabs are involved, as in both we have taken C = A and D = B, while in the numerical
experiment of reference [2] A, B, C and D were all different. Whether or not this is significant,
it does suggest that the R–S case deserves a great deal more detailed study.

3. Morphological aspects: the question of self-similarity

It is known from general theory of fractal objects [11, 12] that strict self-similarity, which
requires that the entire object be reproduced by magnification of any chosen segment, is not
entirely possible if the system is multifractal—that is to say, if different scaling factors are
involved. Now, in all physical models commonly studied, even in the simplest ones, the
spectra are actually multifractal [2]—leaving aside for the time being the R–S sequence. This
suggests severe reservations as regards unproved claims to having found self-similarity, a
concept which is not usually defined in a precise manner and largely remains in essence a
matter of visual appreciation. The integrated density of states (IDOS) is usually claimed to
be a self-similar devil’s staircase, but this was critically scrutinized for a simple Fibonacci
heterostructure by detailed examination of different magnifications and shown to hold only
approximately and for the lowest part of the spectrum only [2]. We have encountered
the same situation for the IDOS of system 2—shear waves—calculated with a periodic
approximant.

In view of the fractal structure obtained for the R–S heterostructures of systems 3 and 4—
table 2—we have calculated the IDOS for the low part of the spectrum in both of these cases.
The results are shown in figure 2. One expects the R–S sequence, being as it is a self-replicating
one, to have properties different from those of a regular periodic sequence—a superlattice—
especially after inspecting the results shown in table 2 for systems 3 and 4, but the results of
figure 2 show that the IDOS is definitely not self-similar, even approximately.

The ground-state wavefunction is often presented as evidence of self-similarity. Fig-
ure 3(a) shows the ground-state (n = 1) wavefunction for system 1 obtained with a type (ii)
approximant. Although the term requires more precise definition, one could say that this has
some self-similar appearance in the usual somewhat loose sense, but this is totally lost as soon
as we go up to any higher state. Figure 3(b) shows the wavefunction for n = 10, with no
trace of self-similarity. Finally, figure 3(c) shows the ground-state wavefunction for the R–S
heterostructure of system 3. The difference between figures 3(c) and 3(a) is quite striking.
All one can say is that this R–S heterostructure localizes the ground state rather strongly, with
again no trace of self-similarity. A similar result is obtained with tight-binding models [15].

4. Final comments

We have seen that if the purpose is to perform a fractal analysis, different approximants have
topologically equivalent spectra and thus can be alternatively chosen. Some approximants
might be intrinsically inadequate for studying a specific physical problem—like infinite barriers
for the transmittance across the QH, for instance—but they are all valid alternatives for the
fractal analysis.

We have verified that an accurate evaluation of the f (α) function requires D(q) to be
reliably estimated for q large and negative and this, for a spectrum with no upper bound, like
that of electronic states, requires including up to a rather high range of the spectrum even if one
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Figure 2. The integrated density of states for the low part of the spectra of (a) system 3—electronic
states—and (b) system 4—elastic shear waves.

analyses experiments involving only the lower part. This is a note of caution as regards many
calculations encountered in the literature, where only a part of the spectrum is considered.

For all self-replicating sequences commonly studied so far, except for the Rudin–Shapiro
one, the Bovier–Ghez theorem establishes that the spectrum is singular continuous and,
wheneverD(q) has been evaluated, it has been found thatD varies with q. This means that the
spectrum is not only fractal, but multifractal and therefore there are different scaling factors.

This rules out strict self-similarity, although some partial results, partially considered,
might have a self-similar appearance. The ground-state wavefunction is sometimes claimed
as evidence of self-similarity, but we have seen that this soon changes as we go up to states
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Figure 3. Electronic wavefunctions obtained with a type (ii) approximant. (a) System 1—Fibonacci
sequence. Ground state, n = 1. (b) System 1. Excited state, n = 10. (c) System 3—Rudin–Shapiro
sequence. Ground state, n = 1. The calculations were performed for the generation N = 16 in
the first two cases, involving 988 interfaces, and for N = 11, involving 1025 in the third case.
The amplitudes correspond to normalized bound-state wavefunctions and the distances are given
in units of the Bohr radius, 0.5292 Å.

only slightly above. Similarly, only a reduced range of the low-energy part of the spectrum
resembles a devil’s staircase and there, again, this soon ceases to stand scrutiny when detailed
magnifications are critically examined. Furthermore, all of the results so far shown have been
obtained for κ = 0, κ being the in-plane 2D wavevector. This is present in the analysis,
witnessing to the 3D nature of the actual physical system. If we start from an IDOS obtained
for κ = 0, obtain something resembling a devil’s staircase in the low part of the spectrum,
and do the calculation for κ �= 0, even a small one, then not the slightest semblance of self-
similarity survives [2]. If only some very especially chosen results have some self-similar
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Figure 3. (Continued)

appearance, the question is: what is the relevance of this as regards the physical nature or
properties of the QH? This seems to require more detailed attention than it has been given.

The Rudin–Shapiro sequence has intriguing features. We have three numerical exp-
eriments; in one the fractal dimension is unity, while in the other two the spectrum is multi-
fractal. It may or may not be significant that in the first case four different constituent slabs
are involved while the other two, while being numerically different, have the common feature
that in both, C = A and D = B. This might suggest that in a parameter space there may
be domains where the sequence has different essential—e.g. topological—properties. The
non-applicability of the Bovier–Ghez theorem leaves room for such a speculation and more
detailed studies from the point of view of design parameters seem to be suggested. One may
also ask whether the R–S sequence is unique or whether there are others in the same class.
These questions seem worth pursuing.
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